SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Linder Stig) ;pers:(Gullbo Joachim);pers:(Zhang Xiaonan)"

Search: WFRF:(Linder Stig) > Gullbo Joachim > Zhang Xiaonan

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fryknäs, Mårten, et al. (author)
  • Iron chelators target both proliferating and quiescent cancer cells
  • 2016
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 6
  • Journal article (peer-reviewed)abstract
    • Poorly vascularized areas of solid tumors contain quiescent cell populations that are resistant to cell cycle-active cancer drugs. The compound VLX600 was recently identified to target quiescent tumor cells and to inhibit mitochondrial respiration. We here performed gene expression analysis in order to characterize the cellular response to VLX600. The compound-specific signature of VLX600 revealed a striking similarity to signatures generated by compounds known to chelate iron. Validation experiments including addition of ferrous and ferric iron in excess, EXAFS measurements, and structure activity relationship analyses showed that VLX600 chelates iron and supported the hypothesis that the biological effects of this compound is due to iron chelation. Compounds that chelate iron possess anti-cancer activity, an effect largely attributed to inhibition of ribonucleotide reductase in proliferating cells. Here we show that iron chelators decrease mitochondrial energy production, an effect poorly tolerated by metabolically stressed tumor cells. These pleiotropic features make iron chelators an attractive option for the treatment of solid tumors containing heterogeneous populations of proliferating and quiescent cells.
  •  
2.
  • Wang, Xin, et al. (author)
  • The 19S Deubiquitinase Inhibitor b-AP15 Is Enriched in Cells and Elicits Rapid Commitment to Cell Death
  • 2014
  • In: Molecular Pharmacology. - 0026-895X .- 1521-0111. ; 85:6, s. 932-945
  • Journal article (peer-reviewed)abstract
    • b-AP15 [(3E, 5E)-3,5-bis[(4-nitrophenyl) methylidene]-1-(prop-2enoyl) piperidin-4-one] is a small molecule inhibitor of the ubiquitin specific peptidase (USP) 14/ubiquitin carboxyl-terminal hydrolase (UCH) L5 deubiquitinases of the 19S proteasome that shows antitumor activity in a number of tumor models, including multiple myeloma. b-AP15 contains an alpha,beta-unsaturated carbonyl unit that is likely to react with intracellular nucleophiles such as cysteine thiolates by Michael addition. We found that binding of b-AP15 to USP14 is partially reversible, and that inhibition of proteasome function is reversible in cells. Despite reversible binding, tumor cells are rapidly committed to apoptosis/cell death after exposure to b-AP15. We show that b-AP15 is rapidly taken up from the medium and enriched in cells. Enrichment provides an explanation of the stronger potency of the compound in cellular assays compared with in vitro biochemical assays. Cellular uptake was impaired by 30-minute pretreatment of cells with low concentrations of N-ethylmaleimide (10 mu M), suggesting that enrichment was thiol dependent. We report that in addition to inhibition of deubiquitinases, b-AP15 inhibits the selenoprotein thioredoxin reductase (TrxR). Whereas proteasome inhibition was closely associated with cell death induction, inhibition of TrxR was not. TrxR inhibition is, however, likely to contribute to triggering of oxidative stress observed with b-AP15. Furthermore, we present structure-activity, in vivo pharmacokinetic, and hepatocyte metabolism data for b-AP15. We conclude that the strong enrichment of b-AP15 in cells and a rapid commitment to apoptosis/cell death are factors that likely contribute to the strong antitumor activity of this compound.
  •  
3.
  • Zhang, Xiaonan, et al. (author)
  • Eradicating Quiescent Tumor Cells by Targeting Mitochondrial Bioenergetics
  • 2016
  • In: Trends in Cancer. - : Elsevier BV. - 2405-8025 .- 2405-8033. ; 2:11, s. 657-663
  • Research review (peer-reviewed)abstract
    • The presence of quiescent cell populations in solid tumors represents a major challenge for disease eradication. Such cells are generally present in poorly vascularized tumor areas, show limited sensitivity to traditional chemotherapeutical drugs, and tend to resume proliferation, resulting in tumor reseeding and growth. There is growing recognition of the importance of developing therapies that target these quiescent cell populations to achieve long-lasting remission. Recent studies have shown that the combination of hypoxia and reduced nutrient availability in poorly vascularized areas results in limited tumor metabolic plasticity coupled with an increased sensitivity to perturbations in mitochondrial flux. Targeting of mitochondrial bioenergetics in these quiescent cell tumor populations may enable tumor eradication and improve the prognosis of patients with cancer.
  •  
4.
  • Zhang, Xiaonan, et al. (author)
  • Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments
  • 2014
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5, s. 3295-
  • Journal article (peer-reviewed)abstract
    • Abnormal vascularization of solid tumours results in the development of microenvironments deprived of oxygen and nutrients that harbour slowly growing and metabolically stressed cells. Such cells display enhanced resistance to standard chemotherapeutic agents and repopulate tumours after therapy. Here we identify the small molecule VLX600 as a drug that is preferentially active against quiescent cells in colon cancer 3-D microtissues. The anticancer activity is associated with reduced mitochondrial respiration, leading to bioenergetic catastrophe and tumour cell death. VLX600 shows enhanced cytotoxic activity under conditions of nutrient starvation. Importantly, VLX600 displays tumour growth inhibition in vivo. Our findings suggest that tumour cells in metabolically compromised microenvironments have a limited ability to respond to decreased mitochondrial function, and suggest a strategy for targeting the quiescent populations of tumour cells for improved cancer treatment.
  •  
5.
  • Zhang, Xiaonan, et al. (author)
  • Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors
  • 2015
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 16:11, s. 27313-27326
  • Research review (peer-reviewed)abstract
    • The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS) or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an Achilles heel for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view